Computing Spectra without Solving Eigenvalue Problems
نویسندگان
چکیده
The approximation of the eigenvalues and eigenfunctions of an elliptic operator is a key computational task in many areas of applied mathematics and computational physics. An important case, especially in quantum physics, is the computation of the spectrum of a Schrödinger operator with a disordered potential. Unlike plane waves or Bloch waves that arise as Schrödinger eigenfunctions for periodic and other ordered potentials, for many forms of disordered potentials the eigenfunctions remain essentially localized in a very small subset of the initial domain. A celebrated example is Anderson localization, for which, in a continuous version, the potential is a piecewise constant function on a uniform grid whose values are sampled independently from a uniform random distribution. We present here a new method for approximating the eigenvalues and the subregions which support such localized eigenfunctions. This approach is based on the recent theoretical tools of the localization landscape and effective potential. The resulting methods, which have only been partially justified theoretically, enable the calculation of the locations and shapes of the approximate supports of the eigenfunctions, the approximate values of many of the eigenvalues, and of the eigenvalue counting function and density of states, all at the cost of solving a single source problem for the same elliptic operator. We study the effectiveness and limitations of the approach through extensive computations in one and two dimensions, using a variety of piecewise constant potentials with values sampled from various different correlated or uncorrelated random distributions.
منابع مشابه
Solving inverse cone-constrained eigenvalue problems
We compare various algorithms for constructing a matrix of order n whose Pareto spectrum contains a prescribed set Λ = {λ1, . . . , λp} of reals. In order to avoid overdetermination one assumes that p does not exceed n2. The inverse Pareto eigenvalue problem under consideration is formulated as an underdetermined system of nonlinear equations. We also address the issue of computing Lorentz spec...
متن کاملIfeast
The FEAST eigenvalue algorithm is a subspace iteration algorithm that uses contour integration in the complex plane to obtain the eigenvectors of a matrix for the eigenvalues that are located in any user-defined search interval. By computing small numbers of eigenvalues in specific regions of the complex plane, FEAST is able to naturally parallelize the solution of eigenvalue problems by solvin...
متن کاملیک الگوریتم کارا برای زیر مسالهی ناحیه اطمینان توسیع یافته با دو قید خطی
Trust region subproblem (TRS), which is the problem of minimizing a quadratic function over a ball, plays a key role in solving unconstrained nonlinear optimization problems. Though TRS is not necessarily convex, there are efficient algorithms to solve it, particularly in large scale. Recently, extensions of TRS with extra linear constraints have received attention of several researchers. It ha...
متن کاملAlgorithms and Library Software for Periodic and Parallel Eigenvalue Reordering and Sylvester-Type Matrix Equations with Condition Estimation
This Thesis contains contributions in two different but closely related subfields of Scientific and Parallel Computing which arise in the context of various eigenvalue problems: periodic and parallel eigenvalue reordering and parallel algorithms for Sylvestertype matrix equations with applications in condition estimation. Many real world phenomena behave periodically, e.g., helicopter rotors, r...
متن کاملApplication of Decoupled Scaled Boundary Finite Element Method to Solve Eigenvalue Helmholtz Problems (Research Note)
A novel element with arbitrary domain shape by using decoupled scaled boundary finite element (DSBFEM) is proposed for eigenvalue analysis of 2D vibrating rods with different boundary conditions. Within the proposed element scheme, the mode shapes of vibrating rods with variable boundary conditions are modelled and results are plotted. All possible conditions for the rods ends are incorporated ...
متن کاملContributions to Parallel Algorithms for Sylvester-type Matrix Equations and Periodic Eigenvalue Reordering in Cyclic Matrix Products
This Licentiate Thesis contains contributions in two different subfields of Computing Science: parallel ScaLAPACK-style algorithms for Sylvester-type matrix equations and periodic eigenvalue reordering in a cyclic product of matrices. Sylvester-type matrix equations, like the continuous-time Sylvester equation AX −XB = C, where A of size m×m, B of size n×n and C of size m×n are general matrices...
متن کامل